Меню

Упруго деформированное тело распрямляясь может совершить. Энергия упругой деформации

Волосы/Прически

Потенциальная энергия упругих деформаций является физической величиной, которая равна половине произведения квадрата деформации тела и его жесткости. Рассмотрим некоторые теоретические вопросы, связанные с данной величиной.

Особенности

Потенциальная энергия упругих деформаций зависит от расположения частей анализируемого тела. Например, выявлена связь между количеством витков пружин и энергией

Потенциальная энергия упругих деформаций определяется начальным и конечным положением пружины, то есть ее деформацией. Сначала вычисляют работу, совершаемую растянутой пружиной в момент возвращения в исходный вид. После этого рассчитывается потенциальная энергия упругой деформации пружины.

Вычисления

Она равна работе, совершаемой силой упругости при переходе упругого тела в состояние, при котором величина деформации равна нулю.

При растяжении с одинаковой силой различных пружин, им будет сообщаться разная величина потенциальной энергии. Выявлена обратно пропорциональная зависимость между жесткостью пружины и величиной потенциальной энергии. Чем более жесткой будет взятая пружина, тем меньшее значение будет принимать Ер.

Таким образом, потенциальная энергия при упругой деформации тел связана с коэффициентом упругости. Работа силы упругости представляет собой величину, которая совершается силой во время изменения величины деформации пружины от первоначального (исходного) значения Х1 до конченого положения Х2.

Разницу между этими значениями называют деформацией пружины. Потенциальная энергия упругих деформаций определяется именно с учетом данного показателя.

Коэффициент жесткости пружины зависит от качества материала, из которого изготавливают рабочее тело. Кроме того, на него влияют геометрические размеры и форма анализируемого объекта. Данную физическую величину обозначают буквой к, используют единицы измерения Н/м.

Выявлена зависимость силы упругости от расстояния между взаимодействующими участками рассматриваемого упругого тела.

Работа силы упругости не связана с формой траектории. В случае перемещения по замкнутому циклу, ее суммарное значение равно нулю. Именно поэтому силы упругости считают потенциальными, и вычисляют их с учетом коэффициента жесткости пружины, величиной деформации пружины.

Заключение

Независимо от внешнего вида, любая современная конструкция в определенной степени деформируется, то есть изменяет свои первоначальные размеры, при действии внешних нагрузок, приложенных к телу. Для того чтобы проверить устойчивость и жесткость такой конструкции, важно определять те перемещения, которые вызваны деформацией ее отдельных элементов. Важным моментом является и определение перемещений рассматриваемой системы. Подобные вычисления проводят при расчетах прочности зданий и сооружений. Проведение разнообразных расчетов, касающихся определения работы потенциальных сил, является обязательным этапом при создании чертежей будущих конструкций во всех сферах промышленности.

Потенциальной энергией может обладать не только система взаимодействующих тел, но и отдельно взятое упруго деформированное тело (например, сжатая пружина, растянутый стержень и т. п.). В этом случае потенциальная энергия зависит от взаимного расположения отдельных частей тела (например, от расстояния между соседними витками пружины).

Согласно формуле (20.2) как для растяжения, так и длясжатия пружины на величину я необходимо затратить работу . Эта работа идет на увеличение потенциальной энергии пружины. Следовательно, зависимость потенциальной энергии пружины от удлинения х имеет вид

где - коэффициент жесткости пружины (см. § 14). Формула (25.4) написана в предположении, что потенциальная энергий недеформнированной пружины равна нулю. На рис. 25.1 показан график зависимости U от х.

При упругой продольной деформации стержня совершается работа, определяемая формулой (20.3). В соответствии с этим потенциальная энергия упруго деформированного стержня равна

Здесь Е - модуль Юнга, - относительное удлинение, - объем стержня;

Введем в рассмотрение плотность энергии упругой деформации и, которую определим как отношение энергии dU к тому объему в котором она заключена:

Поскольку стержень предполагается однородным и деформация, является равномерной, т. е. одинаковой в разных точках стержня, энергия (25.2) распределена в стержне также равномерно. Поэтому можно считать, что

Это выражение дает плотность энергии упругой деформации при растяжении (или сжатии) и в том случае, когда деформация неравномерна. В последнем случае для нахождения плотности энергия в «некоторой точке Стержня нужно подставлять в (25.4) значение в данной точке.

Энергией называется скалярная физическая величина, являющаяся единой мерой различных форм движения материи и мерой перехода движения материи из одних форм в другие.

Для характеристики различных форм движения материи вводятся соответствующие виды энергии, например: механическая, внутренняя, энергия электростатических, внутриядерных взаимодействий и др.

Энергия подчиняется закону сохранения, который является одним из важнейших законов природы.

Механическая энергия Е характеризует движение и взаимодействие тел и является функцией скоростей и взаимного расположения тел. Она равна сумме кинетической и потенциальной энергий.

Кинетическая энергия

Рассмотрим случай, когда на тело массой m действует постоянная сила \(~\vec F\) (она может быть равнодействующей нескольких сил) и векторы силы \(~\vec F\) и перемещения \(~\vec s\) направлены вдоль одной прямой в одну сторону. В этом случае работу силы можно определить как A = F s . Модуль силы по второму закону Ньютона равен F = m∙a , а модуль перемещения s при равноускоренном прямолинейном движении связан с модулями начальной υ 1 и конечной υ 2 скорости и ускорения а выражением \(~s = \frac{\upsilon^2_2 - \upsilon^2_1}{2a}\) .

Отсюда для работы получаем

\(~A = F \cdot s = m \cdot a \cdot \frac{\upsilon^2_2 - \upsilon^2_1}{2a} = \frac{m \cdot \upsilon^2_2}{2} - \frac{m \cdot \upsilon^2_1}{2}\) . (1)

Физическая величина, равная половине произведения массы тела на квадрат его скорости, называется кинетической энергией тела .

Кинетическая энергия обозначается буквой E k .

\(~E_k = \frac{m \cdot \upsilon^2}{2}\) . (2)

Тогда равенство (1) можно записать в таком виде:

\(~A = E_{k2} - E_{k1}\) . (3)

Теорема о кинетической энергии

работа равнодействующей сил, приложенных к телу, равна изменению кинетической энергии тела.

Так как изменение кинетической энергии равно работе силы (3), кинетическая энергия тела выражается в тех же единицах, что и работа, т. е. в джоулях.

Если начальная скорость движения тела массой m равна нулю и тело увеличивает свою скорость до значения υ , то работа силы равна конечному значению кинетической энергии тела:

\(~A = E_{k2} - E_{k1}= \frac{m \cdot \upsilon^2}{2} - 0 = \frac{m \cdot \upsilon^2}{2}\) . (4)

Физический смысл кинетической энергии

кинетическая энергия тела, движущегося со скоростью υ, показывает, какую работу должна совершить сила, действующая на покоящееся тело, чтобы сообщить ему эту скорость.

Потенциальная энергия

Потенциальная энергия – это энергия взаимодействия тел.

Потенциальная энергия поднятого над Землей тела – это энергия взаимодействия тела и Земли гравитационными силами. Потенциальная энергия упруго деформированного тела – это энергия взаимодействия отдельных частей тела между собой силами упругости.

Потенциальными называются силы , работа которых зависит только от начального и конечного положения движущейся материальной точки или тела и не зависит от формы траектории.

При замкнутой траектории работа потенциальной силы всегда равна нулю. К потенциальным силам относятся силы тяготения, силы упругости, электростатические силы и некоторые другие.

Силы , работа которых зависит от формы траектории, называются непотенциальными . При перемещении материальной точки или тела по замкнутой траектории работа непотенциальной силы не равна нулю.

Потенциальная энергия взаимодействия тела с Землей

Найдем работу, совершаемую силой тяжести F т при перемещении тела массой m вертикально вниз с высоты h 1 над поверхностью Земли до высоты h 2 (рис. 1). Если разность h 1 – h 2 пренебрежимо мала по сравнению с расстоянием до центра Земли, то силу тяжести F т во время движения тела можно считать постоянной и равной mg .

Так как перемещение совпадает по направлению с вектором силы тяжести, работа силы тяжести равна

\(~A = F \cdot s = m \cdot g \cdot (h_1 - h_2)\) . (5)

Рассмотрим теперь движение тела по наклонной плоскости. При перемещении тела вниз по наклонной плоскости (рис. 2) сила тяжести F т = m∙g совершает работу

\(~A = m \cdot g \cdot s \cdot \cos \alpha = m \cdot g \cdot h\) , (6)

где h – высота наклонной плоскости, s – модуль перемещения, равный длине наклонной плоскости.

Движение тела из точки В в точку С по любой траектории (рис. 3) можно мысленно представить состоящим из перемещений по участкам наклонных плоскостей с различными высотами h ’, h ’’ и т. д. Работа А силы тяжести на всем пути из В в С равна сумме работ на отдельных участках пути:

\(~A = m \cdot g \cdot h" + m \cdot g \cdot h"" + \ldots + m \cdot g \cdot h^n = m \cdot g \cdot (h" + h"" + \ldots + h^n) = m \cdot g \cdot (h_1 - h_2)\) , (7)

где h 1 и h 2 – высоты от поверхности Земли, на которых расположены соответственно точки В и С .

Равенство (7) показывает, что работа силы тяжести не зависит от траектории движения тела и всегда равна произведению модуля силы тяжести на разность высот в начальном и конечном положениях.

При движении вниз работа силы тяжести положительна, при движении вверх – отрицательна. Работа силы тяжести на замкнутой траектории равна нулю.

Равенство (7) можно представить в таком виде:

\(~A = - (m \cdot g \cdot h_2 - m \cdot g \cdot h_1)\) . (8)

Физическую величину, равную произведению массы тела на модуль ускорения свободного падения и на высоту, на которую поднято тело над поверхностью Земли, называют потенциальной энергией взаимодействия тела и Земли.

Работа силы тяжести при перемещении тела массой m из точки, расположенной на высоте h 2 , в точку, расположенную на высоте h 1 от поверхности Земли, по любой траектории равна изменению потенциальной энергии взаимодействия тела и Земли, взятому с противоположным знаком.

\(~A = - (E_{p2} - E_{p1})\) . (9)

Потенциальная энергия обозначается буквой Е p .

Значение потенциальной энергии тела, поднятого над Землей, зависит от выбора нулевого уровня, т. е. высоты, на которой потенциальная энергия принимается равной нулю. Обычно принимают, что потенциальная энергия тела на поверхности Земли равна нулю.

При таком выборе нулевого уровня потенциальная энергия Е p тела, находящегося на высоте h над поверхностью Земли, равна произведению массы m тела на модуль ускорения свободного падения g и расстояние h его от поверхности Земли:

\(~E_p = m \cdot g \cdot h\) . (10)

Физический смысл потенциальной энергии взаимодействия тела с Землей

потенциальная энергия тела, на которое действует сила тяжести, равна работе, совершаемой силой тяжести при перемещении тела на нулевой уровень.

В отличие от кинетической энергии поступательного движения, которая может иметь лишь положительные значения, потенциальная энергия тела может быть как положительной, так и отрицательной. Тело массой m , находящееся на высоте h , где h < h 0 (h 0 – нулевая высота), обладает отрицательной потенциальной энергией:

\(~E_p = -m \cdot g \cdot h\) .

Потенциальная энергия гравитационного взаимодействия

Потенциальная энергия гравитационного взаимодействия системы двух материальных точек с массами m и М , находящихся на расстоянии r одна от другой, равна

\(~E_p = G \cdot \frac{M \cdot m}{r}\) . (11)

где G – гравитационная постоянная, а нуль отсчета потенциальной энергии (Е p = 0) принят при r = ∞.

Потенциальная энергия гравитационного взаимодействия тела массой m с Землей, где h – высота тела над поверхностью Земли, M e – масса Земли, R e – радиус Земли, а нуль отсчета потенциальной энергии выбран при h = 0.

\(~E_e = G \cdot \frac{M_e \cdot m \cdot h}{R_e \cdot (R_e +h)}\) . (12)

При том же условии выбора нуля отсчета потенциальная энергия гравитационного взаимодействия тела массой m с Землей для малых высот h (h « R e) равна

\(~E_p = m \cdot g \cdot h\) ,

где \(~g = G \cdot \frac{M_e}{R^2_e}\) – модуль ускорения свободного падения вблизи поверхности Земли.

Потенциальная энергия упруго деформированного тела

Вычислим работу, совершаемую силой упругости при изменении деформации (удлинения) пружины от некоторого начального значения x 1 до конечного значения x 2 (рис. 4, б, в).

Сила упругости изменяется в процессе деформации пружины. Для нахождения работы силы упругости можно взять среднее значение модуля силы (т.к. сила упругости линейно зависит от x ) и умножить на модуль перемещения:

\(~A = F_{upr-cp} \cdot (x_1 - x_2)\) , (13)

где \(~F_{upr-cp} = k \cdot \frac{x_1 - x_2}{2}\) . Отсюда

\(~A = k \cdot \frac{x_1 - x_2}{2} \cdot (x_1 - x_2) = k \cdot \frac{x^2_1 - x^2_2}{2}\) или \(~A = -\left(\frac{k \cdot x^2_2}{2} - \frac{k \cdot x^2_1}{2} \right)\) . (14)

Физическая величина, равная половине произведения жесткости тела на квадрат его деформации, называется потенциальной энергией упруго деформированного тела:

\(~E_p = \frac{k \cdot x^2}{2}\) . (15)

Из формул (14) и (15) следует, что работа силы упругости равна изменению потенциальной энергии упруго деформированного тела, взятому с противоположным знаком:

\(~A = -(E_{p2} - E_{p1})\) . (16)

Если x 2 = 0 и x 1 = х , то, как видно из формул (14) и (15),

\(~E_p = A\) .

Физический смысл потенциальной энергии деформированного тела

потенциальная энергия упруго деформированного тела равна работе, которую совершает сила упругости при переходе тела в состояние, в котором деформация равна нулю.

Потенциальная энергия характеризует взаимодействующие тела, а кинетическая энергия – движущиеся тела. И потенциальная, и кинетическая энергия изменяются только в результате такого взаимодействия тел, при котором действующие на тела силы совершают работу, отличную от нуля. Рассмотрим вопрос об изменениях энергии при взаимодействиях тел, образующих замкнутую систему.

Замкнутая система – это система, на которую не действуют внешние силы или действие этих сил скомпенсировано . Если несколько тел взаимодействуют между собой только силами тяготения и силами упругости и никакие внешние силы на них не действуют, то при любых взаимодействиях тел работа сил упругости или сил тяготения равна изменению потенциальной энергии тел, взятому с противоположным знаком:

\(~A = -(E_{p2} - E_{p1})\) . (17)

По теореме о кинетической энергии, работа тех же сил равна изменению кинетической энергии:

\(~A = E_{k2} - E_{k1}\) . (18)

Из сравнения равенств (17) и (18) видно, что изменение кинетической энергии тел в замкнутой системе равно по абсолютному значению изменению потенциальной энергии системы тел и противоположно ему по знаку:

\(~E_{k2} - E_{k1} = -(E_{p2} - E_{p1})\) или \(~E_{k1} + E_{p1} = E_{k2} + E_{p2}\) . (19)

Закон сохранения энергии в механических процессах :

сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой силами тяготения и си-лами упругости, остается постоянной.

Сумма кинетической и потенциальной энергии тел называется полной механической энергией .

Приведем простейший опыт. Подбросим вверх стальной шарик. Сообщив начальную скорость υ нач, мы придадим ему кинетическую энергию, из-за чего он начнет подниматься вверх. Действие силы тяжести приводит к уменьшению скорости шарика, а значит, и его кинетической энергии. Но шарик поднимается выше и выше и приобретает все больше и больше потенциальной энергии (Е p = m∙g∙h ). Таким образом, кинетическая энергия не исчезает бесследно, а происходит ее превращение в потенциальную энергию.

В момент достижения верхней точки траектории (υ = 0) шарик полностью лишается кинетической энергии (Е k = 0), но при этом его потенциальная энергия становится максимальной. Дальше шарик меняет направление движения и с увеличивающейся скоростью движется вниз. Теперь происходит обратное превращение потенциальной энергии в кинетическую.

Закон сохранения энергии раскрывает физический смысл понятия работы :

работа сил тяготения и сил упругости, с одной стороны, равна увеличению кинетической энергии, а с другой стороны, – уменьшению потенциальной энергии тел. Следовательно, работа равна энергии, превратившейся из одного вида в другой.

Закон об изменении механической энергии

Если система взаимодействующих тел не замкнута, то ее механическая энергия не сохраняется. Изменение механической энергии такой системы равно работе внешних сил:

\(~A_{vn} = \Delta E = E - E_0\) . (20)

где Е и Е 0 – полные механические энергии системы в конечном и начальном состояниях соответственно.

Примером такой системы может служить система, в которой наряду с потенциальными силами действуют непотенциальные силы. К непотенциальным силам относятся силы трения. В большинстве случаев, когда угол между силой трения F r тела составляет π радиан, работа силы трения отрицательна и равна

\(~A_{tr} = -F_{tr} \cdot s_{12}\) ,

где s 12 – путь тела между точками 1 и 2.

Силы трения при движении системы уменьшают ее кинетическую энергию. В результате этого механическая энергия замкнутой неконсервативной системы всегда уменьшается, переходя в энергию немеханических форм движения.

Например, автомобиль, двигавшийся по горизонтальному участку дороги, после выключения двигателя проходит некоторый путь и под действием сил трения останавливается. Кинетическая энергия поступательного движения автомобиля стала равной нулю, а потенциальная энергия не увеличилась. Во время торможения автомобиля произошло нагревание тормозных колодок, шин автомобиля и асфальта. Следовательно, в результате действия сил трения кинетическая энергия автомобиля не исчезла, а превратилась во внутреннюю энергию теплового движения молекул.

Закон сохранения и превращения энергии

при любых физических взаимодействиях энергия превращается из одной формы в другую.

Иногда угол между силой трения F tr и элементарным перемещением Δr равен нулю и работа силы трения положительна:

\(~A_{tr} = F_{tr} \cdot s_{12}\) ,

Пример 1 . Пусть, внешняя сила F действует на брусок В , который может скользить по тележке D (рис. 5). Если тележка перемещается вправо, то работа силы трения скольжения F tr2 , действующей на тележку со стороны бруска, положительна:

Пример 2 . При качении колеса его сила трения качения направлена вдоль движения, так как точка соприкосновения колеса с горизонтальной поверхностью двигается в направлении, противоположном направлению движения колеса, и работа силы трения положительна (рис. 6):

Литература

  1. Кабардин О.Ф. Физика: Справ. материалы: Учеб. пособие для учащихся. – М.: Просвещение, 1991. – 367 с.
  2. Кикоин И.К., Кикоин А.К. Физика: Учеб. для 9 кл. сред. шк. – М.: Про-свещение, 1992. – 191 с.
  3. Элементарный учебник физики: Учеб. пособие. В 3 т. / Под ред. Г.С. Ландсберга: т. 1. Механика. Теплота. Молекулярная физика. – М.: Физматлит, 2004. – 608 с.
  4. Яворский Б.М., Селезнев Ю.А. Справочное руководство по физике для поступающих в вузы и самообразования. – М.: Наука, 1983. – 383 с.

РАБОЧАЯ ПРОГРАММА ПРОФЕССИОНАЛЬНОГ МОДУЛЯ

ПМ 02 «Организация сетевого администрирования» для специальности 09.02.02 «Компьютерные сети»

(базовая подготовка)

Рабочая программа профессионального модуля (далее рабочая программа) – является частью примерной основной профессиональной образовательной программы в соответствии с ФГОС по специальности (специальностям) СПО 230111 Компьютерные сети (базовой и углубленной подготовки) в части освоения основного вида профессиональной деятельности (ВПД): Организация сетевого администрирования и соответствующих профессиональных компетенций (ПК):

ПК 2.1. Администрировать локальные вычислительные сети и принимать меры по устранению возможных сбоев.

ПК 2.2. Администрировать сетевые ресурсы в информационных системах.

ПК 2.3. Обеспечивать сбор данных для анализа использования и функционирования программно-технических средств компьютерных сетей.

ПК 2.4. Взаимодействовать со специалистами смежного профиля при разработке методов, средств и технологий применения объектов профессиональной деятельности.

OK 1. Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.

ОК 2. Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.

ОК 3. Принимать решения в стандартных и нестандартных ситуациях и нести за них ответственность.

ОК 4. Осуществлять поиск и использование информации, необходимой для эффективного выполнения профессиональных задач, профессионального и личностного развития.

ОК 5. Использовать информационно-коммуникационные технологии в профессиональной деятельности.

ОК 6. Работать в коллективе и в команде, эффективно общаться с коллегами, руководством, потребителями.

ОК 7. Брать на себя ответственность за работу членов команды (подчиненных), за результат выполнения заданий.

ОК 8. Самостоятельно определять задачи профессионального и личностного развития, заниматься самообразованием, осознанно планировать повышение квалификации.

ОК 9. Ориентироваться в условиях частой смены технологий в профессиональной деятельности.

Рабочая программа профессионального модуля может быть использована в дополнительном профессиональном образовании и профессиональной подготовке работников в области информатики и вычислительной техники при наличии среднего (полного) общего образования. Опыт работы не требуется.

1.2. Цели и задачи профессионального модуля – требования к результатам освоения профессионального модуля

С целью овладения указанным видом профессиональной деятельности и соответствующими профессиональными компетенциями обучающийся в ходе освоения профессионального модуля должен:

иметь практический опыт:

Настройки сервера и рабочих станций для безопасной передачи информации;

Установки web-сервера;

Организации доступа к локальным и глобальным сетям;

Сопровождения и контроля использования почтового сервера, SQL сервера;

Расчёта стоимости лицензионного программного обеспечения сетевой инфраструктуры;

Сбора данных для анализа использования и функционирования программно – технических средств компьютерных сетей;

уметь:

Администрировать локальные вычислительные сети;

Принимать меры по устранению возможных сбоев;

Устанавливать информационную систему;

Создавать и конфигурировать учетные записи отдельных пользователей и пользовательских групп;

Регистрировать подключения к домену, вести отчётную документацию;

Рассчитывать стоимость лицензионного программного обеспечения сетевой инфраструктуры;

Устанавливать и конфигурировать антивирусное программное обеспечение, программное обеспечение баз данных, программное обеспечение мониторинга;

Обеспечивать защиту при подключении к Интернет средствами операционной системы;

знать:

Основные направления администрирования компьютерных сетей;

Типы серверов, технологию «клиент – сервер»;

Способы установки и управления сервером;

Утилиты, функции, удаленное управление сервером;

Порядок использования кластеров;

Порядок взаимодействия различных операционных систем;

Алгоритм автоматизации задач обслуживания;

Порядок мониторинга и настройки производительности;

Технологию ведения отчётной документации;

Классификацию программного обеспечения сетевых технологий и область его применения;

Порядок и основы лицензирования программного обеспечения;

Оценку стоимости программного обеспечения в зависимости от способа и места его использования.

максимальной учебной нагрузки обучающегося – 606 часов, в том числе:

всего– 536 часов, включая:

обязательной аудиторной учебной нагрузки обучающегося – 140 часов;

самостоятельной работы обучающегося – 70 часов;

учебной и производственной практики – 396 часов,

в том числе

учебной практики по программированию – 216 часов,

производственной практики (по профилю специальности) 180 часов.

{edocs}poks/rp_modulPM02_090202.pdf,700,500{/edocs}

Потенциальная энергия имеется у системы взаимодействующих тел. Но отдельное деформированное тело также обладает такого типа энергией. В таком случае потенциальная энергия зависит от взаимного расположения частей тела.

Энергия упругой деформации

Если груз, подвешенный на проволоке, растягивает подвес и опускается, значит, сила тяжести совершает работу. За счет такой работы увеличивается энергия деформированного тела, которое перешло из ненапряженного состояния в напряженное. Получается, что при деформации внутренняя энергия тела увеличивается. Рост внутренней энергии тела заключается в увеличении потенциальной энергии, которая связана со взаимным расположением молекул тела. Если мы имеем дело с упругой деформацией, то после снятия нагрузки, дополнительная энергия исчезает, и за ее счет силы упругости совершают работу. В ходе упругой деформации температура твердых тел существенно не увеличивается. В этом состоит их значительное отличие от газов, которые при сжатии нагреваются. При пластической деформации твердые тела могут значительно увеличивать свою температуру. В повышении температуры, следовательно, кинетической энергии молекул, отражается рост внутренней энергии тела при пластической деформации. При этом увеличение внутренней энергии происходит также за счет работы сил, вызывающих деформацию.

Для того чтобы растянуть или сжать пружину следует выполнить работу () равную:

где - величина характеризующая изменение длины пружины (удлинение пружины); - коэффициент упругости пружины. Данная работа идут на изменение потенциальной энергии пружины ():

При записи выражения (2) считаем, что потенциальная энергия пружины без деформации равна нулю.

Потенциальная энергия упруго деформированного стержня

Потенциальная энергия упруго деформированного стержня при его продольной деформации равна:

где - модуль Юнга; - относительное удлинение; - объем стержня. Для однородного стержня при равномерной его деформации плотность энергии упругой деформации можно найти как:

Если деформация стержня является неравномерной, то при использовании формулы (3) для поиска энергии в точке стержня в эту формулу подставляют значение для рассматриваемой точки.

Плотность энергии упругой деформации при сдвиге находят, используя выражение:

где - модуль сдвига; - относительный сдвиг.

Примеры решения задач

ПРИМЕР 1

Задание Камень, имеющий массу при выстреле из рогатки начал полет со скоростью . Каков коэффициент упругости резинового шнура рогатки, если при выстреле шнур получил удлинение ? Считайте, что изменением сечения шнура можно пренебречь.
Решение В момент выстрела потенциальная энергия растянутого шнура () переходит в кинетическую энергию камня (). По закону сохранения энергии можно записать:

Потенциальную энергию упругой деформации резинового шнура найдем как:

где - коэффициент упругости резины,

кинетическая энергия камня:

следовательно

Выразим коэффициент жесткости резины из (1.4):

Ответ

ПРИМЕР 2

Задание Пружину, имеющую жесткость , сжимает сила, величина которой равна . Какова работа () приложенной силы при дополнительном сжатии этой же пружины еще на ?
Решение Сделаем рисунок.