Меню

Чему равна полная механическая энергия. Полная механическая энергия тел и систем

Любовь

Механическая энергия системы существует в кинетическом и потенциальном виде. Кинетическая энергия появляется, когда объект или система начинает двигаться. Потенциальная энергия возникает при взаимодействии объектов или систем друг с другом. Она не появляется и не исчезает бесследно и, зачастую, не зависит от работы. Однако она может переходить из одной формы в другую.

Например, шар для боулинга, находясь на уровне трех метров над землей, не имеет кинетической энергии, потому что он не двигается. У него есть большое количество потенциальной энергии (в этом случае, гравитационной энергии), которая будет преобразована в кинетическую, если шар начнет падать.

Знакомство с различными видами энергии начинается в средних классах школы. Детям, как правило, легче визуализировать и легко понять принципы механических систем, не вдаваясь в подробности. Основные расчеты в таких случаях могут быть сделаны без использования сложных вычислений. В большинстве простых физических задач, механическая система остается замкнутой и факторы, которые уменьшают значение общей энергии системы, не принимаются во внимание.

Механическая, химическая и ядерная энергия системы

Существует множество различных видов энергии, и иногда, может быть, трудно правильно отличить один из них от другого. Химическая энергия, например, представляет собой результата взаимодействия молекул веществ между собой. Ядерная энергия появляется во время взаимодействия между частицами в ядре атома. Механическая энергия, в отличие от других, как правило, не учитывает молекулярный состав объекта и учитывает только их взаимодействие на макроскопическом уровне.

Это приближение предназначено для упрощения расчетов механической энергии сложных систем. Объекты в этих системах обычно рассматриваются в виде однородных тел, а не как сумма миллиардов молекул. Расчет как кинетической, так и потенциальной энергии одного объекта является простой задачей. Расчет тех же видов энергии для миллиардов молекул будет крайне затруднительным. Без упрощения деталей в механической системе, ученые должны были бы изучить отдельные атомы, а также все взаимодействия и силы, существующие между ними. Этот подход, как правило, применяется элементарных частиц.

Преобразование энергии

Механическая энергия может быть преобразована в другие виды энергии с использованием специального оборудования. Например, генераторы предназначены для превращения механической работы в электричество. Другие виды энергии также могут быть преобразованы в механическую энергию. Например, двигатель внутреннего сгорания в автомобиле преобразует химическую энергию топлива в механическую, используемую для движения.

Взгляните: катящийся по дорожке шар сбивает кегли, и они разлетаются по сторонам. Только что выключенный вентилятор ещё некоторое время продолжает вращаться, создавая поток воздуха. Обладают ли эти тела энергией?

Заметим: шар и вентилятор совершают механическую работу, значит, обладают энергией. Они обладают энергией потому, что движутся. Энергию движущихся тел в физике называют кинетической энергией (от греч. «кинема» – движение).

Кинетическая энергия зависит от массы тела и скорости его движения (перемещения в пространстве или вращения). Например, чем больше масса шара, тем больше энергии он передаст кеглям при ударе, тем дальше они разлетятся. Например, чем больше скорость вращения лопастей, тем дальше вентилятор переместит поток воздуха.

Кинетическая энергия одного и того же тела может быть различной с точек зрения различных наблюдателей. Например, с нашей точки зрения как читателей этой книги, кинетическая энергия пня на дороге равна нулю, так как пень не движется. Однако по отношению к велосипедисту пень обладает кинетической энергией, поскольку стремительно приближается, и при столкновении совершит очень неприятную механическую работу – погнёт детали велосипеда.

Энергию, которой тела или части одного тела обладают потому, что взаимодействуют с другими телами (или частями тела), в физике называют потенциальной энергией (от лат. «потенциа» – сила).

Обратимся к рисунку. При всплытии мяч может совершить механическую работу, например, вытолкнуть нашу ладонь из воды на поверхность. Расположенная на некоторой высоте гиря может совершить работу – расколоть орех. Натянутая тетива лука может вытолкнуть стрелу. Следовательно, рассмотренные тела обладают потенциальной энергией, так как взаимодействуют с другими телами (или частями тела). Например, мяч взаимодействует с водой – архимедова сила выталкивает его на поверхность. Гиря взаимодействует с Землёй – сила тяжести тянет гирю вниз. Тетива взаимодействует с другими частями лука – её натягивает сила упругости изогнутого древка лука.

Потенциальная энергия тела зависит от силы взаимодействия тел (или частей тела) и расстояния между ними. Например, чем больше архимедова сила и глубже мяч погружён в воду, чем больше сила тяжести и дальше гиря от Земли, чем больше сила упругости и дальше оттянута тетива, – тем больше потенциальные энергии тел: мяча, гири, лука (соответственно).

Потенциальная энергия одного и того же тела может быть различной по отношению к различным телам. Взгляните на рисунок. При падении гири на каждый из орехов обнаружится, что осколки второго ореха разлетятся намного дальше, чем осколки первого. Следовательно, по отношению к ореху 1 гиря обладает меньшей потенциальной энергией, чем по отношению к ореху 2. Важно: в отличие от кинетической энергии, потенциальная энергия не зависит от положения и движения наблюдателя, а зависит от выбора нами «нулевого уровня» энергии.

Системой частиц может быть любое тело, газ, механизм, Солнечная система и т. д.

Кинетическая энергия системы частиц, как упоминалось выше, определяется суммой кинетических энергий частиц, входящих в данную систему.

Потенциальная энергия системы складывается из собственной потенциальной энергии частиц системы, и потенциальной энергии системы во внешнем поле потенциальных сил .

Собственная потенциальная энергия обусловлена взаимным расположением частиц, принадлежащих данной системе (т.е. ее конфигурацией), между которыми действуют потенциальные силы, а также взаимодействием между отдельными частями системы. Можно показать, что работа всех внутренних потенциальных сил при изменении конфигурации системы равна убыли собственной потенциальной энергии системы:

. (3.23)

Примерами собственной потенциальной энергии являются энергия межмолекулярного взаимодействия в газах и жидкостях, энергия электростатического взаимодействия неподвижных точечных зарядов. Примером внешней потенциальной энергии является энергия тела, поднятого над по­верхностью Земли, так как она обусловлена действием на тело пос­тоянной внешней потенциальной силы - силы тяжести.

Разделим силы, действующие на систему частиц, на внутренние и внешние, а внутренние - на потенциальные и непотенциальные. Представим (3.10) в виде

Перепишем (3.24) с учетом (3.23):

Величина, сумма кинетической и собственной по­тенциальной энергии системы, является полной механической эне­ргией системы . Перепишем (3.25) в виде:

т.е., приращение механической энергии системы равно алгебраической сумме работ всех внутренних непотенциальных сил и всех внешних сил.

Если в (3.26) положить A внешн =0 (это равенство означает, что система является замкнутой) и (что равносильно отсутствию внутренних непотенциальных сил), то получим:

Оба равенства (3.27) являются выражениями закона сохранения механической энергии : механическая энергия замкнутой системы частиц, в которой отсутствуют непотенциальные силы, сохраняется в процес­се движения, Такую систему называют консервативной. С достаточной степенью точности замкнутой консервативной системой можно считать Солнечную систему. При движении замкнутой консервативной си­стемы сохраняется полная механическая энергия, в то время как кинетическая и потенциальная энергия изме­няются. Однако эти изменения такие, что приращение одной из них в точности равно уменьшению другой.

Если замк­нутая система не является консервативной, т. е. в ней действуют непотенциальные силы, например, силы трения, то механическая энергия такой систе­мы, убывает, так как расходуется на работу против этих сил. Закон сохранения механической энергии является лишь отдельным проявлением существующего в природе универсального закона сохранения и превращения энер­гии: энергия никогда не создается и не уничтожается, она мо­жет только переходить из одной формы в другую или об­мениваться между отдельными частями материи. При этом понятие энергии расширяется введением понятий о новых формах ее кроме механической, - энергии электромагнитного поля, химической энергии, ядерной и др. Универсальный закон сохранения и превращения энер­гии охватыва­ет те физические явления, на которые законы Ньютона не распространяются. Этот закон имеет самостоятельное значение, так как получен на основе обобщений опытных фактов.


Пример 3.1 . Найти работу, совершаемую упругой силой, действующей на материальную точку вдоль некоторой оси х. Сила подчиняется закону , где х - смещение точки из начального положения (в котором.х=x 1), - единичный вектор в направлении оси х.

Найдем элементарную работу упругой силы при перемещении точки на величину dx. В формулу (3.1) для элементарной работы подставим выражение для силы:

.

Затем найдем работу силы, выполним интегрирование вдоль оси x в пределах от x 1 до x :

. (3.28)

Формулу (3.28) можно применить для определения потенциальной энергии сжатой или растянутой пружины, которая первоначально находится в свободном состоянии, т.е. x 1 =0 (коэффициент k называется коэффициеном жесткости пружины). Потенциальная энергия пружины при сжатии или растяжении равна работе против упругих сил, взятой с обратным знаком:

.

Пример 3.2 Применение теоремы об изменении кинетической энергии.

Найти минимальную скорость u, которую надо сообщить снаряду , чтобы он поднялся на высоту H над поверхностью Земли (сопротивлением атмосферного воздуха пренебречь ).

Направим ось координат от центра Земли по направлению полета снаряда. Начальная кинетическая энергия снаряда будет затрачена на работу против потенциальных сил гравитационного притяжения Земли. Формулу (3.10) с учетом формулы (3.3) можно представить в виде:

.

Здесь A – работа против силы гравитационного притяжения Земли (, g гравитационная постоянная, r – расстояние, отсчитываемое от центра Земли). Знак минус появляется из-за того, что проекция силы гравитационного притяжения на направление движения снаряда отрицательна. Интегрируя последнее выражение и учитывая, что T(R+H)=0, T(R) = mυ 2 /2 , получим:

Решив полученное уравнение относительно υ, найдем:

где - ускорение свободного падения на поверхности Земли.

Полная механическая энергия тела равна сумме его кинетической и потенциальной энергии.

Полную механическую энергию рассматривают в тех случаях, когда действует закон сохранения энергии и она остаётся постоянной.

Если на движение тела не оказывают влияния внешние силы, например, нет взаимодействия с другими телами, нет силы трения или силы сопротивления движению, тогда полная механическая энергия тела остаётся неизменной во времени.

E пот + E кин = const

Разумеется, что в повседневной жизни не существует идеальной ситуации, в которой тело полностью сохраняло бы свою энергию, так как любое тело вокруг нас взаимодействует хотя бы с молекулами воздуха и сталкивается с сопротивлением воздуха. Но, если сила сопротивления очень мала и движение рассматривается в относительно коротком промежутке времени, тогда такую ситуацию можно приближённо считать теоретически идеальной.

Закон сохранения полной механической энергии обычно применяют при рассмотрении свободного падения тела, при его вертикальном подбрасывании или в случае колебаний тела.

Пример:

При вертикальном подбрасывании тела его полная механическая энергия не меняется, а кинетическая энергия тела переходит в потенциальную и наоборот.

Преобразование энергии отображено на рисунке и в таблице.

Точка нахождения тела

Потенциальная энергия

Кинетическая энергия

Полная механическая энергия

E пот = m ⋅ g ⋅ h (max)

E полная = m ⋅ g ⋅ h

2) Средняя

(h = средняя)

E пот = m ⋅ g ⋅ h

E кин = m ⋅ v 2 2

E полная = m ⋅ v 2 2 + m ⋅ g ⋅ h

E кин = m ⋅ v 2 2 (max)

E полная = m ⋅ v 2 2

Исходя из того, что в начале движения величина кинетической энергии тела одинакова с величиной его потенциальной энергии в верхней точке траектории движения, для расчётов могут быть использованы ещё две формулы.

Если известна максимальная высота, на которую поднимается тело, тогда можно определить максимальную скорость движения по формуле:

v max = 2 ⋅ g ⋅ h max .

Если известна максимальная скорость движения тела, тогда можно определить максимальную высоту, на которую поднимается тело, брошенное вверх, по такой формуле:

h max = v max 2 2 g .

Чтобы отобразить преобразование энергии графически, можно использовать имитацию «Энергия в скейт-парке », в которой человек, катающийся на роликовой доске (скейтер) перемещается по рампе. Чтобы изобразить идеальный случай, предполагается, что не происходит потерь энергии в связи с трением. На рисунке показана рампа со скейтером, и далее на графике показана зависимость механической энергии от места положения скейтера на траектории.

На графике синей пунктирной линией показано изменение потенциальной энергии. В средней точке рампы потенциальная энергия равна \(нулю\). Зелёной пунктирной линией показано изменение кинетической энергии. В верхних точках рампы кинетическая энергия равна \(нулю\). Жёлто-зелёная линия изображает полную механическую энергию - сумму потенциальной и кинетической - в каждый момент движения и в каждой точке траектории. Как видно, она остаётся \(неизменной\) во всё время движения. Частота точек характеризует скорость движения - чем дальше точки расположены друг от друга, тем больше скорость движения.

Величина, которая приравнивается к половине от произведения массы данного тела на скорость этого тела в квадрате, называется в физике кинетической энергией тела или энергией действия. Изменение или непостоянство кинетической или движущей энергии тела за некоторое время будет равно работе, которая была совершена за данное время определенной силой, действующей на данное тело. Если работа какой-либо силы по замкнутой траектории любого типа будет равна нулю, то силу такого рода называют потенциальной силой. Работа таких потенциальных сил не будет зависеть от того, по какой траектории движется тело. Такая работа определяется начальным положением тела и его конечным положением. Точка начала отсчета или нуль для потенциальной энергии может быть выбрана абсолютно произвольно. Величина, которая будет равна работе, совершенной потенциальной силой для перемещения тела из данного положения в нулевую точку, называется в физике потенциальной энергией тела или энергией состояния.

Для различных видов сил в физике существуют различные формулы вычисления потенциальной или стационарной энергии тела.

Работа, совершенная потенциальными силами, будет равна изменению данной потенциальной энергии, которое должно быть взято по противоположному знаку.

Если сложить кинетическую и потенциальную энергию тела, то получится величина, которая называется полная механическая энергия тела. В положении, когда система нескольких тел является консервативной, для нее справедлив закон сохранения или постоянства механической энергии. Консервативная система тел - это такая система тел, которая подвержена действию только лишь тех потенциальных сил, что не зависят от времени.

Закон сохранения или постоянства механической энергии звучит так: «Во время любых процессов, которые происходят в некоторой системе тел, ее полная механическая энергия всегда остается неизменной». Таким образом, полная или вся механическая энергия любого тела или любой системы тел остается постоянной, если эта система тел является консервативной.

Закон сохранения или постоянства полной или всей механической энергии всегда инвариантен, то есть не меняется его форма записи, даже при изменении начальной точки отсчета времени. Это является следствием из закона однородности времени.

Когда на систему начинают действовать диссипативные силы, например, такие как то наступает постепенное уменьшение или убывание механической энергии этой замкнутой системы. Такой процесс называется диссипация энергии. Диссипативная система - это система, энергия в которой может уменьшаться с течением времени. Во время диссипации происходит полное превращение механической энергии системы в другую. Это полностью соответствует всеобщему закону энергии. Таким образом, в природе нет полностью консервативных систем. Обязательно в любой системе тел или будет иметь место та или иная диссипативная сила.